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Abstract

This paper presents a new approach for integrating case-based reasoning (CBR) with an ART-Kohonen neural network (ART-KNN) to

enhance fault diagnosis. When solving a new problem, the neural network is used to make hypotheses and to guide the CBR module in the

search for a similar previous case that supports one of the hypotheses. The knowledge acquired by the network is interpreted and mapped into

symbolic diagnosis descriptors, which are kept and used by the system to determine whether a final answer is credible, and to build

explanations for the reasoning carried out. ART-KNN, synthesizing the theory of adaptive resonance theory and the learning strategy of

Kohonen neural network, can solve the plasticity-stability dilemma of conventional neural networks. It can carry out ‘on-line’ training

without forgetting previously trained patterns (stable training), and recode previously trained categories adaptive to changes in the

environment and is self-organizing, which differs from most of networks that only can be carried out off-line. The proposed system has been

used in the faults diagnosis of electric motor to verify the system performance. The result shows the proposed system performs better than

self-organizing feature map (SOFM) based system with respect to classification rate.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Fault diagnosis of machines is gaining importance in

industry because of the need to increase reliability and to

decrease possible loss of production due to machine

breakdown. Efficient incipient faults detection and accurate

faults diagnosis have been become critical to machinery

normal running. When some faults appear in production

process, the efficient condition monitoring and maintenance

can reduce the cost due to machinery failures and downtime.

However, engineers who have expert knowledge and

experience are rare in the real world. Even if experts are

available, the technical information needed by the engineers

is not always to hand, or received in the first instance. This is

because the information is distributed centrally, but it is the

responsibility of the distributor or subsidiary to relay it, and

there are difficulties in remembering and applying this

amount of knowledge for experts. In addition to the above

issues, the correct diagnosis of a fault is fairly complicated.

This is because:

† A symptom can be caused by different fault conditions.

† Some faults are not easy to recognize in the machine, due

to the background noise.

† There are many components with machinery.

† There is a high level of interaction between these

components.

While an artificial neural network (ANN) is used to make

hypotheses and to guide the search for similar cases in the

library, case-based reasoning (CBR) is used to select a most

similar match for a given problem, supporting a particular

hypothesis or deciding among hypotheses. The diagnosis

descriptors are created and maintained according to the

knowledge stored in the ANN, keeping an intelligible

description of the knowledge represented in the network and

defining a ranking scheme for the most important attributes

observed in these cases. This ranking scheme is used for

consultation purposes, for confirming or refuting a final

result, and for building explanations (Reategui, Campbell,

& Leao, 1997).
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CBR has been introduced in the early 1980s as a

plausible reasoning approach supported by the idea that

people reply on concrete previous experiences when solving

new problems (Barletta, 1993; Aamodt & Plaza, 1994).

CBR is a reasoning technique that reuses past cases to find a

solution to the new problem. Typically, a CBR retains

a fairly large number of previous cases in a case base. When

a new problem occurs, it will be represented as a new case

and compared to the cases in the case base. Thus, the cases

similar to the new cases will be used to suggest to users a

solution for the new problem. Usually, the solved new case

will also be added into the case base. Many CBR systems

have been reported for solving problems in various domains,

such as diagnosis, planning, design, and image processing.

However, despite the relative success with which CBR

techniques have been employed, they have brought with

them some disadvantages. For example, previous cases may

influence a CBR system in different directions without

giving it many hints on which cases to consider as more

important. This problem, associated with other difficulties in

case-based indexing and retrieval, suggests that combining

CBR with complementary forms of reasoning, such as rule-

based, model-based or neural network, may be fruitful

(Reategui et al., 1997; Reategui & Leao, 1993).

The goal in this work is to propose a new approach from

integrating CBR with ANNs to solve diagnostic problems.

By combining CBR with ANNs, we stand to benefit both

from the logic-based and cognitive nature of symbolic

systems and from the numeric, associative and self-adapting

nature of ANNs.

Presently, the fault diagnosis is increasingly intelligent

with wide applications of ANNs. However, conventional

‘off-line’ ANNs are unable to well adapt to unexpected

changes in the environment. Furthermore, the data of the

dataset used to train networks need be added, as new fault or

case occurs. In this case, the ‘off-line’ network requires to be

retrained using the complete dataset. This can result in a time

consuming and costly process. In the real world, although

part offault signals or cases can be obtained, it is very difficult

to compose the training dataset representing the features of

all faults. Nobody knows what will happen next time. These

characteristics limit the applications of ‘off-line’ ANNs in

fault diagnosis field. The ANNs for fault diagnosis of

machinery are required to learn gradually the knowledge in

operating process, and to have the adaptive function

expanding the knowledge continuously without the loss of

the previous knowledge during learning new knowledge. The

authors (Yang, Han, & An, 2003) proposed a fault diagnosis

network (ART-Kohonen neural network, ART-KNN) which

synthesizes the adaptive resonance theory (ART) (Carpenter

& Grossberg, 1988) and the learning strategy of Kohonen

neural network (KNN) (Kohonen, 1995). ART-KNN does

not destroy the initial learning and can adapt the additional

training data that is suitable for fault diagnosis of rotating

machinery (Yang et al., 2003). The advantage of ANNs is

that they could learn something without understanding

the detailed knowledge of things, just depending on the

training pattern (Liobet et al., 1999; An, 2002).

The main aim of this paper is to build one diagnosis

system to solve rare engineers and other problems in the real

diagnosis process. The proposed system can provide

diagnosis results depending on measurement condition

and signal, and also can update on-line, that new case of

the diagnosis procedure and results obtained by experts are

automatically added to the system. The hybrid system have

been used the diagnosis of electric motors and confirmed the

validity with a good level of accuracy.

2. ART-Kohonen neural network

ART-KNN combines the theory of ART (Carpenter &

Grossberg, 1988) with Kohonen’s learning strategy (Koho-

nen, 1995) to realize machinery fault diagnosis. The

architecture of ART-KNN is shown in Fig. 1.

This network is similar to ART1’s, excluding the

adaptive filter. ART-KNN is also formed by two major

subsystems: the attentional subsystem and the orienting

subsystem. Two interconnected layers, discernment layer

and comparison layer, which are fully connected both

bottom-up and top-down, comprise the attentional sub-

system. The application of a single input vector leads to

patterns of neural activity in both layers. The activity in

discernment nodes reinforces the activity in comparison

nodes due to top-down connections. The interchange of

bottom-up and top-down information leads to a resonance in

neural activity. As a result, critical features in comparison

are reinforced, and have the greatest activity. The orienting

subsystem is responsible for generating a reset signal to

discernment when the bottom-up input pattern and top-

down template pattern mismatch at comparison, according

to a similarity. In others words, once it has detected that

the input pattern is novel, the orienting subsystem mush

Fig. 1. Architecture of the ART-KNN network.
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prevent the previously organized category neurons in

discernment from learning this pattern (visa a reset signal).

Otherwise, the category will become increasingly non-

specific. When a mismatch is detected, the network adapts

its structure by immediately storing the novelty in additional

weights. The similarity criterion is set by the value of the

similarity parameter. A high value of the similarity

parameter means than only a slight mismatch will be

tolerated before a reset signal is emitted. On the other hand,

a small value means that large mismatches will be tolerated.

After the resonance check, if a pattern match is detected

according to the similarity parameter, the network changes

the weights of the winning node.

The learning strategy is introduced by the KNN

(Kohonen, 1995). The Euclidean distances of all weights

between input vector X and each neuron of the discernment

layer are evaluated as the similarity given by Eq. (1), the

smallest one becomes the winning neuron.

kBJ 2 Xk , kBj 2 Xk; j; J ¼ 1; 2;…; n; j – J; ð1Þ

where Bj is the weight of jth neuron in the discernment

layer, BJ is the weight of the winning neuron. After

producing the winning neuron, input vector X returns to the

comparison layer. The absolute similarity S is calculated by

S ¼
kBJk2 kBJ 2 Xk

kBJk
ð2Þ

If BJ and X in Eq. (2) are same, kBJ 2 Xk is equal to 0,

and S is 1. The larger the Euclidean distance between BJ and

X is, the smaller S is. A parameter r is introduced as the

evaluation criterion of similarity. If S . r; it indicates that

the Jth cluster is sufficiently similar to X. So X belongs to the

Jth cluster. In order to make the weight more accurate to

represent the corresponding cluster, the weight of Jth cluster

is improved by the following equation:

BJ ¼ ðn £ BJ0 þ XÞ=ðn þ 1Þ; ð3Þ

where BJ is the enhanced weight, BJ0 is the origin weight,

and n is the changed time.

On the contrary, as S , r; it means that X is much

different with the Jth cluster. Thus there is no cluster that

matches X in the original network. The network needs one

more neuron to remember this new case by resetting in the

discernment layer. The weight of new neuron is given by

Bnþ1 ¼ X: ð4Þ

3. Case-based reasoning system

Basically, a CBR system is a model of human reasoning.

The idea behind CBR is that people rely on concrete previous

experiences when solving new problems (Joh, 1997). A CBR

system solves new problems by adapting solutions that were

used to solve old problems. CBR is to solve a new problem by

remembering a previous similar situation and by reusing

information and knowledge of that situation (Yang, Lim, &

Lee, 2000; Yang, Lee, & Lim, 1997). The case base holds a

number of problems with their corresponding solutions.

Once a new problem arises, the solution to it is obtained by

retrieving similar cases from the case base and studying the

similarity between them. A CBR system is a dynamic system

in which new problems are added to the case base, redundant

ones are eliminated, and others are created by combining

existing ones (Fyfe & Corchado, 2001). Since the CBR

model was first proposed, it has proved successful in a wide

range of application areas (Kolodner, 1993; Kolodner &

Mark, 1992; Kolodner, 1991; Pal, Dillon, & Yeung, 2000).

There are two main phases in a CBR system:

Initial development: A number, usually large, of previous

cases of faults and their known solutions are encoded into

the systems. This is known as developing the case base.

Routine use: A current problem, with unknown origin and

unknown solution, is presented to the system, initially as a

textual description. The system then searches the case

base in an attempt to find historically known cases, which

match this current problem as closely as possible. In

situations in which there are several matches of a similar

degree of closeness, the system may ask one or more

questions to try to disambiguate these previous cases, and

to narrow down the solution to one (or a few) which match

the current problem closely.

Conceptually CBR is commonly described by the CBR

cycle shown in Fig. 2. This cycle is composed of four

sequential phases which are recalled every time that a

problem needs to be solved (Aamodt & Plaza, 1994;

Kolodner, 1993; Watson, 1997). The first phase retrieves the

most similar case or cases to the new problem from a set of

case base. Then, in the second phase, the system tries to

Fig. 2. The model of the CBR cycle (Aamodt & Plaza, 1994).
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reuse the information and knowledge of the previously

retrieved cases for solving the new problem. Next, the third

phase revises the proposed solution if there is a difference

between the new problem and the retrieved case. Finally, the

fourth phase retains the new solution as part of a new case

likely to be useful for future problem solving.

Each of the steps of the CBR cycle requires a model

or method in order to perform its mission. The

algorithms selected for the retrieval of cases should be

able to search the case base and to select from it the

most similar problems, together with their solutions, to

the new problem. Cases should therefore represent,

accurately, problems and their solutions. Once one or

more cases are identified in the case base as being very

similar to the new problem, they are selected for the

solution of this particular problem. These cases are

reused using a predefined method in order to generate a

proposed solution. This solution is revised (if possible)

and finally the new case is stored. Cases can also be

deleted if they prove to be inaccurate; they can be

merged together to create more generalized ones and

they can be modified.

Through the CBR cycle, it can be seen that if the best-

retrieved case is a perfect match, then the system has

achieved its goal and finishes. However, it is more usual

that the retrieved case matches the problem case only to a

certain degree. In this situation, the closest case may

provide a sub-optimal solution or the closest retrieved case

may be revised using some pre-defined adaptation

formulae or rules (Choy, Lee & Lo, 2003).

There are three methods of case indexing for case

retrieval (Barletta, 1991): k nearest neighbor (k-NN),

inductive learning (IL), and knowledge-guided. In the k-

NN algorithm which is the most widely used technology in

CBR, all features of a new case are matched to their

corresponding feature of all previous cases stored in the case

base, and the degree of matching for each pair is computing

using a matching function. The IL-indexing method indexes

previous cases based on the most important features

affecting the outcomes as induced from the data itself

(Buta, 1994). This method can make retrieval more effective

and efficient than no indexing method, but it has some

disadvantages such as the difficulty in optimizing the

induction tree and the vulnerability to insufficient cases

and poor case descriptions (Kolodner, 1993; Kim & Han,

2001). The knowledge-guided indexing method is similar to

expert system and it uses rules which human users or experts

determine the features used to index cases. Generally, these

methods summarized as follows: (1) k-NN indexing is

preferred when a retrieval goal is not well defined and only a

few cases are available. (2) IL-indexing is preferred if the

retrieval goal is not well defined and many cases are

available. (3) Knowledge-guided indexing is preferred if the

retrieval goal is well-defined (Barletta, 1991).

4. Intelligent diagnosis system

In this paper, the hybrid system is proposed through

synthesizing the characteristics of ART-KNN and CBR.

The structure of the system is illustrated in Fig. 3. The

procedure of this system can be summarized as three main

parts: case base, feature description and ART-KNN. Three

different parts can be distinguished, each playing a different

role in the reasoning process.

4.1. Standard case base

The case base is used to collect learned cases from case

history as one uniform pattern. A case base consists of

prototypical previous cases experienced in electric motors.

These cases were acquired from troubleshooting reports

which were experienced in industrial fields. We rearranged

the standard case on the basis of every kind of technical

troubleshooting reports concerned with case history, and

constructed the case-base in the format of Hyper Text Mark-

up Language (HTML) that can read through Web browser.

Each case was arranged in the standard form: number of

Fig. 3. General structure of hybrid system.
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case, object machine, occurrence symptoms, data analysis,

estimated cause, corrective action and results, and reference

as shown in Table 1. The previous cases also include a set of

attribute value pairs and their degree of importance which

were acquired from a domain expert. These are necessary

for matching. Relevant symptoms, fault causes, analysis

results and their interrelationships applicable to a previous

case were determined by the expert by reference to the

troubleshooting reports.

4.2. Feature description

The feature description consists of six categories, 20

variables shown in Table 2. It means that features of

diagnosis procedure are extracted from the case base. The

descriptors described in the feature domains rank the most

important findings for each diagnosis. The descriptors

referenced by these features are characterized by their

frequency and specificity in relation to the diagnosis. The

previous cases also include descriptors and their degree of

importance (i.e. weight) which were acquired from a

domain expert. Usually, the descriptor weights can only

be determined after the case has been solved (Gupta &

Montazemi, 1997a). Hence, the descriptors of a new case

are equally weighted. In previous cases, the local descriptor

weights are used as follows. After the domain expert

identifies the descriptors in a previous case, they are sorted

in to symptoms. The domain expert was provided with a

five-point Likert-type scale that assigns a degree of

importance to individual descriptors qualitatively (Gupta

& Montazemi, 1997a; Cognitive Systems, 1992). The scale

ranges from the least important descriptor 0 to the most

important descriptor 2. When corresponding phenomenon

occurs, it has some values; otherwise, it is 0 (Fig. 4).

4.3. The combinatorial neural network

The final part, ART-KNN, is carried out the classification

for new case depending on the known knowledge. If the new

case cannot be solved, the expert involves the fault

diagnosis. Then the conclusion, which is got from

the expert, is retained, and the new case is added into case

Table 1

Uniform pattern of case collection in the case base

Case M-23 Electric fault by eccentricity of electric

motor rotor

Object machine Induction motor for driving centrifugal

compressor, 700HP, 3600 rpm

Occurring symptom Higher axial vibration than normal,

growling continuous noise

Data analysis † High 1X, 3X components of axial

direction

† Some small sidebands components but

nothing significant

Estimated cause † Motor was running off its magnetic

center

† No grease in coupling

Corrective action and results † Removed from service.

† Maintenance personnel check alignment

and realign as necessary

† Correction of magnetic center by

realigning

† Lubrication in coupling

Reference Guy K.R. (1993). Case histories: power

industry, Vibration Institute, p. 38

Table 2

Feature descriptions of case characteristics

Feature domain Descriptor

Vibration and

measurement positions

† Bearing radial direction

† Bearing axial direction

† Motor foundation

† Motor casing

Operation condition † Vibration changes with load

† Vibration changes with flow rate

† Instantly disappear when power off

Rotating frequency

ðfrÞ components

† Running frequency component ðfrÞ

† Harmonics components (2fr; 3fr;…)

† Sub-harmonics components (1=2fr; 1=3fr)

† Sidebands components around fr
† Sharp increases of harmonics

Line frequency

ðfLÞ components

† Beat

† Sidebands around fL; 2fL
† 2fL component

Characteristic

bearing frequencies

† Outer race defect frequency

† Inner race defect frequency

† Ball defect frequency

Others † Periodic noise

† Abnormal noise

Fig. 4. Case base for electric motor.
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base. Moreover, the network is revised correspondingly for

reuse in future. The neural model is used here in three main

tasks:

† To learn which are the findings and combinations of

findings that are commonly observed for each diagnosis

considered.

† To make hypotheses for the diagnosis of new cases.

† To guide the CBR module in the search for similar cases

that can support one of the hypotheses designated in the

previous step.

The learning process composes three main tasks:

† Training the neural network.

† Incorporating new cases in the case library.

† Building the diagnosis descriptors.

The NN is trained according to the respective learning

algorithms referenced in the previous section. The cases

used to train the network are stored in the library in

a sequential manner. The last learning step is the

construction of a descriptor for each of the diagnosis

considered.

Training and classification procedures of ART-KNN are

as follows (Yang et al., 2003):

Step 1: Input of case base data into the network.

Twenty input variables in six categories are selected as

defined in Table 2. As the characteristics of ART-KNN

are training and classification together, the ART-KNN is

empty before application. Thus, as the first case ‘L’ in

Fig. 4 enters the network, there is no neuron to compare

with it. One neuron is added to remember this case

(step 5).

Step 2: Calculating the Euclidean distances d between the

first case data X and neurons of each pattern stored Z.

d ¼ kX 2 Zk ¼
Xn

t¼1

ðzi 2 xiÞ

" #1=2

ð5Þ

Step 3: The neuron that is nearest to the case data is

considered as winning neuron. Then the similarity of

winning neuron Pj and input vector of case data X is

evaluated by using Eq. (6).

S ¼ ðkPjk2 kPj 2 XkÞ=kPjk ð6Þ

If Pj and X in Eq. (6) are same, kPj 2 Xk is equal to zero, and

S is 1. The larger the Euclidean distance between Pj and X is,

the smaller S is. A parameter r is introduced as the

evaluation criterion of similarity. If S . r; it indicates that

the jth cluster is sufficiently similar to X. So X belongs to the

jth cluster.

Step 4: If the similarity value is equal or larger than the

matching value, the input case belongs to the winning

neuron. Then the weight of the neuron is improved due to

the input case.

Step 5: On the contrary, if the similarity value is lest than

the matching value, one additional neuron is necessary to

represent the new case, and used for classification in future.

When the second case ‘A’ inputs the network, the

Euclidean distance is calculated again. Go without saying,

the only one neuron is winner. Then the similarity of both is

evaluated. And the comparison is implemented between

similarity value and matching value (step 4 and 5). The third

case “M” enters the network. The distances and similarity

are calculated. If the matching value is properly set, one

neuron should be added since it is new case for the network.

The rest may be deduced by analogy.

5. Experiment and test results

5.1. Experiment data

In this paper, electrical motors were taken for instance.

Induction motors are the majority of the industry prime

movers and are the most popular for their reliability and

simplicity of construction. Although motors are reliable,

they are subjected to some faults (Singh & Sas, 2003).

The database contained 64 cases for seven different

motor defects, which are representative of problems that had

occurred in the field in the past were selected for our test.

The distribution of the cases for each diagnosis is the

following: 14 cases with bearing faults, 20 cases with rotor

damages, 5 cases with stator faults, 9 cases with air-gap

related, 6 cases with misalignment, 3 cases with mechanical

unbalance and 7 cases with components looseness (Baxter,

1987). The diagnosis and repair solution used in these cases

was known from troubleshooting reports. The cases for

theses defects have been corrected with the supervision of

an expert. The validation of proposed system was demon-

strated to subjects by reference to a previous troubleshoot-

ing event. Fig. 4 shows an example of electric motor case

base composed for experiments. In experiment, 60 cases

from database were selected to train the system. Four

testing-sets were used to evaluate the system’s performance

in this experiment.

5.2. Test results and discussion

As a new problem for testing, a case of rotor fault was

used from reference (Baxter, 1987). A 250 HP AC motor

in a plant was detected high level of vibration and noise

with beating frequency. Also, the vibration amplitude of

running speed frequency, its second and third harmonics

have occurred very high. On the basis of observed

symptoms, advisor hypothesized an occurrence of ‘rotor

bar damage’ and recommended relevant tests that could

gather evidence toward confirmation of this fault. A

zooming analysis of vibration and current signals was

performed to improve the resolution ability around three

harmonics and line frequency (60 Hz). Several sets of

B.-S. Yang et al. / Expert Systems with Applications 26 (2004) 387–395392



sidebands were observed at around 60 Hz as shown in

Fig. 5. Sidebands are usually the result of either amplitude

and frequency modulations or pulse modulation. The level

of sidebands increased along with an increase in load. The

width of sidebands are identified the product of number of

pole and slip speed.

Table 3 presents the characteristics and input data of

new problem summarized. This case enters the network

after the feature extraction. In order to understand the

relationships of criterion parameter r; number of neuron

and classification success rate, Figs. 6 and 7 are used to

explain it. The equation of classification success rate

(CSR) is defined by

CSR ¼ C=ðT 2 NÞ £ 100% ð7Þ

where C is the number of accurate classification, T is the

number of total data, and N is the number of generated

neuron. (T 2 N) means the number of used data for test,

which equal to the input data number minus the training

data number.

The general trend of CSR as shown in Fig. 7 is increasing

with r: However, it is not continues. Each cluster is

composed many neurons with same property, and the cluster

region becomes the summation of total neuron region

representing its region. The number of neuron is direct

proportional to r: Because each neuron region becomes

small and the number of neuron increases with increasing r;

the region of the cluster changes bigger or smaller, which is

decided by the space distribution of neurons with same

property. Then, if the distance of adjoining clusters is close

to each other, the CSR will be increased or decreased

locally. The larger similarity coefficient is, the higher

accuracy rate is. The number of neuron is deduced by

analogy. In this paper, the similarity coefficient was set to

0.91. Accordingly the success rate is 96%, and the neuron

number is 28.

With above description, the system retrieved two

previous cases, M-19 and M-74. These results are shown

in Table 4 together with results of similarity obtained by

modified cosine matching function (MCMF) (Gupta &

Montazemi, 1997a,b). The similarity of the new problem

with the previous cases M-19 and M-74 determined by

Table 3

Features, input data and classification result of new problem

Features of new problem Vibration increase due to load

† Beat vibration

† Excessive vibration of operating frequency

† Increasing harmonics

† Sidebands around line frequency

Input data 0 0.1 0.4 1.25 0

Classification result Rotor bar damage

Fig. 5. Frequency spectrum of new problem (Baxter, 1987).

Fig. 6. Classification accuracy versus similarity coefficient.
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MCMF are 0.586, 0.525, respectively. The similarity

indicated that the previous case M-19 was more relevant

than the previous case M-74 toward solving the new case.

From Fig. 6, it can be noted that classification accuracy rate

and the used neuron increase with the similarity. It goes

without saying. Table 5 shows the performance of the ART-

KNN-CBR system and SOFM-CBR system (Kim, Yang, &

Kim, 2002). ART-KNN-CBR, diagnosing correctly 96.9%

of the cases, performs considerably better than the SOFM-

CBR achieved 87.5%. This is mainly because the

ART-KNN-CBR system has a confirmation method that

calculates and enforces a minimum level of credibility for

final results. The threshold mechanism used by the SOFM-

CBR is not as efficient when presented with cases that the

neural network should not be able to diagnose. Especially, if

cases presenting each cause are insufficient in training phase

when input untrained cases misclassification occurs. There

are two important factors that influenced the drop in the

performance of the system. The first is the incompleteness

of the description of previous cases in database. Secondly,

and probably most importantly, there are shortage of cases

of database. But, the indexing scheme based on the use of

knowledge coming from the neural network enables a very

big reduction in the number of cases compared (Reategui

et al., 1997).

6. Conclusions

This paper has presented a hybrid system through

synthesizing ART-KNN and CBR to deal with rare engineers

and other encountered problems in the real diagnosis process.

When solving a new problem, the neural network is used to

make hypotheses and to guide the CBR module in the search

for a similar previous case that supports one of the

hypotheses. The knowledge acquired by the network is

interpreted and mapped into symbolic diagnosis descriptors,

which are kept and used by the system to determine whether a

final answer is credible, and to build explanations for the

reasoning carried out. ART-KNN, synthesizing the theory of

ART and the learning strategy of KNN, can solve the

plasticity-stability dilemma of conventional neural net-

works. It can carry out ‘on-line’ training without forgetting

previously trained patterns (stable training), and recode

previously trained categories adaptive to changes in the

environment and is self-organizing, which differs from most

of networks that only can be carried out off-line. The system

was validated by faults cases for electric motor collected

from the case history. The results show the success rate can

reach 97%. It indicates that the system is feasible, and is

promising for other fields.
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